46 research outputs found

    Energy Reallocation to Breeding Performance through Improved Nest Building in Laboratory Mice.

    Get PDF
    Mice are housed at temperatures (20-26°C) that increase their basal metabolic rates and impose high energy demands to maintain core temperatures. Therefore, energy must be reallocated from other biological processes to increase heat production to offset heat loss. Supplying laboratory mice with nesting material may provide sufficient insulation to reduce heat loss and improve both feed conversion and breeding performance. Naïve C57BL/6, BALB/c, and CD-1breeding pairs were provided with bedding alone, or bedding supplemented with either 8g of Enviro-Dri, 8g of Nestlets, for 6 months. Mice provided with either nesting material built more dome-like nests than controls. Nesting material improved feed efficiency per pup weaned as well as pup weaning weight. The breeding index (pups weaned/dam/week) was higher when either nesting material was provided. Thus, the sparing of energy for thermoregulation of mice given additional nesting material may have been responsible for the improved breeding and growth of offspring

    Applying refinement to the use of mice and rats in rheumatoid arthritis research

    Get PDF
    Rheumatoid arthritis (RA) is a painful, chronic disorder and there is currently an unmet need for effective therapies that will benefit a wide range of patients. The research and development process for therapies and treatments currently involves in vivo studies, which have the potential to cause discomfort, pain or distress. This Working Group report focuses on identifying causes of suffering within commonly used mouse and rat ‘models’ of RA, describing practical refinements to help reduce suffering and improve welfare without compromising the scientific objectives. The report also discusses other, relevant topics including identifying and minimising sources of variation within in vivo RA studies, the potential to provide pain relief including analgesia, welfare assessment, humane endpoints, reporting standards and the potential to replace animals in RA research

    Heat or Insulation: Behavioral Titration of Mouse Preference for Warmth or Access to a Nest

    Get PDF
    In laboratories, mice are housed at 20–24°C, which is below their lower critical temperature (≈30°C). This increased thermal stress has the potential to alter scientific outcomes. Nesting material should allow for improved behavioral thermoregulation and thus alleviate this thermal stress. Nesting behavior should change with temperature and material, and the choice between nesting or thermotaxis (movement in response to temperature) should also depend on the balance of these factors, such that mice titrate nesting material against temperature. Naïve CD-1, BALB/c, and C57BL/6 mice (36 male and 36 female/strain in groups of 3) were housed in a set of 2 connected cages, each maintained at a different temperature using a water bath. One cage in each set was 20°C (Nesting cage; NC) while the other was one of 6 temperatures (Temperature cage; TC: 20, 23, 26, 29, 32, or 35°C). The NC contained one of 6 nesting provisions (0, 2, 4, 6, 8, or 10g), changed daily. Food intake and nest scores were measured in both cages. As the difference in temperature between paired cages increased, feed consumption in NC increased. Nesting provision altered differences in nest scores between the 2 paired temperatures. Nest scores in NC increased with increasing provision. In addition, temperature pairings altered the difference in nest scores with the smallest difference between locations at 26°C and 29°C. Mice transferred material from NC to TC but the likelihood of transfer decreased with increasing provision. Overall, mice of different strains and sexes prefer temperatures between 26–29°C and the shift from thermotaxis to nest building is seen between 6 and 10 g of material. Our results suggest that under normal laboratory temperatures, mice should be provided with no less than 6 grams of nesting material, but up to 10 grams may be needed to alleviate thermal distress under typical temperatures

    Handling method alters the hedonic value of reward in laboratory mice

    Get PDF
    Mice are the most widely used model species for drug discovery and scientific research. Consequently, it is important to refine laboratory procedures and practices to ensure high standards of welfare and scientific data quality. Recent studies have identified that the standard practice of handling laboratory mice by their tails increases behaviours indicative of anxiety, which can be overcome by handling mice using a tunnel. However, despite clear negative effects on mice’s behaviour, tunnel handling has yet to be widely implemented. In this study, we provide the first evidence that tail handling also reduces mice’s responses to reward. Anhedonia is a core symptom of clinical depression, and is measured in rodents by assessing how they consume a sucrose solution: depressed mice consume less sucrose and the size of their licking bouts when drinking (their ‘lick cluster sizes’) also tend to be smaller. We found that tail handled mice showed more anhedonic responses in both measures compared to tunnel handled mice, indicative of a decreased responsiveness to reward and potentially a more depressive-like state. Our findings have significant implications for the welfare of laboratory mice as well as the design and interpretation of scientific studies, particularly those investigating or involving reward

    Two Distinct Coagulase-Dependent Barriers Protect Staphylococcus aureus from Neutrophils in a Three Dimensional in vitro Infection Model

    Get PDF
    Staphylococcus aureus is a pyogenic abscess-forming facultative pathogenic microorganism expressing a large set of virulence-associated factors. Among these, secreted proteins with binding capacity to plasma proteins (e.g. fibrinogen binding proteins Eap and Emp) and prothrombin activators such as Coagulase (Coa) and vWbp are involved in abscess formation. By using a three-dimensional collagen gel (3D-CoG) supplemented with fibrinogen (Fib) we studied the growth behavior of S. aureus strain Newman and a set of mutants as well as their interaction with mouse neutrophils by real-time confocal microscopy. In 3D-CoG/Fib, S. aureus forms microcolonies which are surrounded by an inner pseudocapsule and an extended outer dense microcolony-associated meshwork (MAM) containing fibrin. Coa is involved in formation of the pseudocapsule whereas MAM formation depends on vWbp. Moreover, agr-dependent dispersal of late stage microcolonies could be observed. Furthermore, we demonstrate that the pseudocapsule and the MAM act as mechanical barriers against neutrophils attracted to the microcolony. The thrombin inhibitor argatroban is able to prevent formation of both pseudocapsule and MAM and supports access of neutrophils to staphylococci. Taken together, this model can simulate specific stages of S. aureus abscess formation by temporal dissection of bacterial growth and recruitment of immune cells. It can complement established animal infection models in the development of new treatment options

    Benefits of a ball and chain: simple environmental enrichments improve welfare and reproductive success in farmed American mink (Neovison vison)

    Get PDF
    Can simple enrichments enhance caged mink welfare? Pilot data from 756 sub-adults spanning three colour-types (strains) identified potentially practical enrichments, and suggested beneficial effects on temperament and fur-chewing. Our main experiment started with 2032 Black mink on three farms: from each of 508 families, one juvenile male-female pair was enriched (E) with two balls and a hanging plastic chain or length of hose, while a second pair was left as a non-enriched (NE) control. At 8 months, more than half the subjects were killed for pelts, and 302 new females were recruited (half enriched: ‘late E’). Several signs of improved welfare or productivity emerged. Access to enrichment increased play in juveniles. E mink were calmer (less aggressive in temperament tests; quieter when handled; less fearful, if male), and less likely to fur-chew, although other stereotypic behaviours were not reduced. On one farm, E females had lower cortisol (inferred from faecal metabolites). E males tended to copulate for longer. E females also weaned more offspring: about 10% more juveniles per E female, primarily caused by reduced rates of barrenness (‘late E’ females also giving birth to bigger litters on one farm), effects that our data cautiously suggest were partly mediated by reduced inactivity and changes in temperament. Pelt quality seemed unaffected, but E animals had cleaner cages. In a subsidiary side-study using 368 mink of a second colour-type (‘Demis’), similar temperament effects emerged, and while E did not reduce fur-chewing or improve reproductive success in this colour-type, E animals were judged to have better pelts. Overall, simple enrichments were thus beneficial. These findings should encourage welfare improvements on fur farms (which house 60-70 million mink p.a.) and in breeding centres where endangered mustelids (e.g. black-footed ferrets) often reproduce poorly. They should also stimulate future research into more effective practical enrichments

    The epidemiology of fighting in group-housed laboratory mice

    Get PDF
    Injurious home-cage aggression (fighting) in mice affects both animal welfare and scientific validity. It is arguably the most common potentially preventable morbidity in mouse facilities. Existing literature on mouse aggression almost exclusively examines territorial aggression induced by introducing a stimulus mouse into the home-cage of a singly housed mouse (i.e. the resident/intruder test). However, fighting occurring in mice living together in long-term groups under standard laboratory housing conditions has barely been studied. We performed a point-prevalence epidemiological survey of fighting at a research institution with an approximate 60,000 cage census. A subset of cages was sampled over the course of a year and factors potentially influencing home-cage fighting were recorded. Fighting was almost exclusively seen in group-housed male mice. Approximately 14% of group-housed male cages were observed with fighting animals in brief behavioral observations, but only 14% of those cages with fighting had skin injuries observable from cage-side. Thus simple cage-side checks may be missing the majority of fighting mice. Housing system (the combination of cage ventilation and bedding type), genetic background, time of year, cage location on the rack, and rack orientation in the room were significant risk factors predicting fighting. Of these predictors, only bedding type is easily manipulated to mitigate fighting. Cage ventilation and rack orientation often cannot be changed in modern vivaria, as they are baked in by cookie-cutter architectural approaches to facility design. This study emphasizes the need to invest in assessing the welfare costs of new housing and husbandry systems before implementing them

    Scratch that itch: Farrowing crate scratching enrichment for sows

    No full text
    Developing effective enrichments is important for improving pig (Sus scrofa) welfare as it increases species-specific behaviours, decreases abnormal behaviours, and increases time active. However, few enrichments are available for sows in farrowing crates. Pigs are often observed to scratch, or rub against objects, however enrichments designed to provide a scratching outlet have never been tested in sows. We examined the behaviour and welfare of sows in farrowing crates when they were presented with one of two types of scratchpad enrichment. Sows (n = 18) of parities two (P2) and three (P3) were housed for 25 days and assigned no enrichment (Control) or a scratch-pad made of plastic mats (Plastic) or coir fibre mats (Fibre). Parity two Plastic sows scratched for a longer total duration than P2 and P3 Fibre sows, P3 Plastic sows, and P2 Control sows. Parity two Plastic sows also displayed scratching bouts more frequently than all except P3 Control sows. There were no body lesion differences between treatments. Abnormal behaviour and proportion of time spent in different postures also did not differ between treatments. Plastic scratch-pads may be a suitable enrichment for farrowing crates as they increased the natural behaviour of scratching. More research is needed to refine the scratch-pad design and measure motivation before it can be concluded that scratch-pads are a successful enrichment that should be implemented on-farm
    corecore